- uniform convexity
- мат.равномерная выпуклость
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Convexity — Con*vex i*ty, n.; pl. {Convexities}. [L. convexitas: cf. F. convexit[ e].] The state of being convex; the exterior surface of a convex body; roundness. [1913 Webster] A smooth, uniform convexity and rotundity of a globe. Bentley. [1913 Webster] … The Collaborative International Dictionary of English
Uniform polychoron — In geometry, a uniform polychoron (plural: uniform polychora) is a polychoron or 4 polytope which is vertex transitive and whose cells are uniform polyhedra.This article contains the complete list of 64 non prismatic convex uniform polychora, and … Wikipedia
Modulus and characteristic of convexity — In mathematics, the modulus and characteristic of convexity are measures of how convex the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε δ definition of uniform convexity as the modulus … Wikipedia
Convexities — Convexity Con*vex i*ty, n.; pl. {Convexities}. [L. convexitas: cf. F. convexit[ e].] The state of being convex; the exterior surface of a convex body; roundness. [1913 Webster] A smooth, uniform convexity and rotundity of a globe. Bentley. [1913… … The Collaborative International Dictionary of English
Lp space — In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p norm for finite dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford Schwartz 1958, III.3),… … Wikipedia
Hanner's inequalities — In mathematics, Hanner s inequalities are results in the theory of L p spaces. Their proof was published in 1956 by Olof Hanner. They provide a simpler way of proving the uniform convexity of L p spaces for p isin; [1, + infin;) than the approach … Wikipedia
Uniformly convex space — In mathematics, uniformly convex spaces are common examples of reflexive Banach spaces. These include all Hilbert spaces and the L p spaces for 10 so that for any two vectors with |x|le1 and |y|le 1, :|x+y|>2 delta implies :|x y| … Wikipedia
Espace Uniformément Convexe — En mathématiques, un espace uniformément convexe est un cas particulier d espace de Banach réflexif. Ces espaces comprennent les espaces de Hilbert et les espaces Lp pour Le concept de convexité uniforme a été introduit par James A. Clarkson en… … Wikipédia en Français
Espace uniformement convexe — Espace uniformément convexe En mathématiques, un espace uniformément convexe est un cas particulier d espace de Banach réflexif. Ces espaces comprennent les espaces de Hilbert et les espaces Lp pour Le concept de convexité uniforme a été… … Wikipédia en Français
Theoreme de Milman-Pettis — Espace uniformément convexe En mathématiques, un espace uniformément convexe est un cas particulier d espace de Banach réflexif. Ces espaces comprennent les espaces de Hilbert et les espaces Lp pour Le concept de convexité uniforme a été… … Wikipédia en Français
Théorème de Milman-Pettis — Espace uniformément convexe En mathématiques, un espace uniformément convexe est un cas particulier d espace de Banach réflexif. Ces espaces comprennent les espaces de Hilbert et les espaces Lp pour Le concept de convexité uniforme a été… … Wikipédia en Français